Skip to content

metazoo.bio.evolutionary

Contains genetic algorithm implementations and evolutionary operators.

Submodules

  • ga: Genetic Algorithm core
  • operators: Crossover, mutation, selection

Example

from metazoo.bio.evolutionary.ga import GeneticAlgorithm
from metazoo.gym.evolutionary import crossover, mutation, selection

Reference

GeneticAlgorithm

A Simple Genetic Algorithm (GA) implementation.

Source code in metazoo/src/metazoo/bio/evolutionary/ga.py
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
class GeneticAlgorithm:
    """A Simple Genetic Algorithm (GA) implementation."""

    def __init__(
        self,
        fitness_function: Callable[[np.ndarray], float],
        crossover_function: Callable[
            [np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]
        ],
        mutation_function: Callable[[np.ndarray], np.ndarray],
        selection_function: Callable[[np.ndarray], np.ndarray],
        encoder: Encoding,
        mutation_rate: float = 0.01,
        crossover_rate: float = 0.7,
        minimize: bool = True,
        elitism: float = None,  # Percentage of best individuals to preserve
        population_size: int = 100,
    ):
        self.fitness_function = fitness_function
        self.mutation_function = mutation_function
        self.crossover_function = crossover_function
        self.selection_function = selection_function
        self.mutation_rate = mutation_rate
        self.crossover_rate = crossover_rate
        self.minimize = minimize
        self.elitism = elitism

        self.population = Population(population_size, encoder)

        self.best_individual = None
        self.best_fitness = -np.inf
        self.fitness_history = []
        self.best_history = []

    def summary(self):
        """
        Print all relevant information about the GA instance using rich.
        """
        table = Table(title="Genetic Algorithm Summary")
        table.add_column("Parameter", style="bold cyan")
        table.add_column("Value", style="bold magenta")
        table.add_row("Population Size", str(self.population_size))
        table.add_row("Genome Length", str(self.genome_length))
        table.add_row("Mutation Rate", str(self.mutation_rate))
        table.add_row("Crossover Rate", str(self.crossover_rate))
        # table.add_row("Encoding", str(self.encoding))
        table.add_row("Selection Function", self.selection_function.__name__)
        table.add_row("Crossover Function", self.crossover_function.__name__)
        table.add_row("Mutation Function", self.mutation_function.__name__)
        table.add_row("Fitness Function", self.fitness_function.__name__)
        # table.add_row("Dimension", str(self.dim))
        table.add_row(
            "Elitism", str(self.elitism) if self.elitism is not None else "None"
        )
        # if self.encoding == "binary":
        #    table.add_row("Epsilon", str(self.epsilon))
        #    table.add_row("Bits Per Var", str(self.bits_per_var))
        #    table.add_row("Genome Length", str(self.genome_length))

        table.add_row("Minimize", str(self.minimize))
        console = Console()
        console.print(table)

    def eval(self):
        """
        Evaluate the fitness of the current population.
        """

        # Raw Fitness.

        raw_fitness = np.array(
            [
                self.fitness_function(self.population.encoding.decode(individual))
                for individual in self.population.individuals
            ]
        )

        if self.minimize:
            fitness = np.nan_to_num(raw_fitness, nan=1e10, posinf=1e10, neginf=1e10)
            self.best_fitness = float(fitness.min())
            best_idx = int(fitness.argmin())
            fitness_transformed = np.max(fitness) - fitness
        else:
            fitness = np.nan_to_num(raw_fitness, nan=-1e10, posinf=-1e10, neginf=-1e10)
            self.best_fitness = float(fitness.max())
            best_idx = int(fitness.argmax())
            fitness_transformed = fitness

        bestcandidate = self.population.individuals[best_idx]
        self.best_individual = self.population.encoding.decode(bestcandidate)

        return fitness, fitness_transformed

    def evolve(self):
        """
        Perform one generation of evolution.
        """
        fitness, fitness_transformed = self.eval()
        self.fitness_history.append(fitness.mean())
        self.best_history.append(self.best_fitness)
        selected_indices = self.selection_function(
            self.population.individuals, fitness_transformed
        )
        selected_parents = self.population.individuals[selected_indices]
        next_generation = self.create_descendants(selected_parents)

        if self.elitism is not None:
            # Elitism
            # Its a stategy to preserve the best individuals from one generation to the next.
            # This is done to ensure that the best solutions found so far are not lost due to the stochastic nature of genetic algorithms.
            # Here, we simply copy the best individual from the current population to the next generation.
            # This garantees that the best solution found so far is always preserved.
            # Think that in nature, the best individuals are more likely to survive and reproduce, passing their genes to the next generation.
            # Preserve N% of the best individuals
            N = max(1, int(self.elitism * self.population.size))
            if self.minimize:
                elite_indices = np.argsort(fitness)[
                    :N
                ]  # Indices of the N best individuals (minimization)
            else:
                elite_indices = np.argsort(fitness)[
                    -N:
                ]  # Indices of the N best individuals (maximization)
            elites = self.population.individuals[elite_indices]
            next_generation[:N] = (
                elites  # Replace the first N individuals with the elites
            )

        self.population.individuals = next_generation

    def create_descendants(self, parents: np.ndarray) -> np.ndarray:
        """
        Create descendants from the selected parents using crossover and mutation.
        """
        # Validate
        if len(parents) < 2:
            raise ValueError("Not enough parents to create descendants.")
        next_generation = []
        for _ in range(self.population.size // 2):
            # Select two parents
            idx1, idx2 = np.random.choice(len(parents), size=2, replace=False)
            parent1 = parents[idx1]
            parent2 = parents[idx2]
            child1, child2 = self.crossover_function(parent1, parent2)
            # Apply mutation
            child1 = self.mutation_function(child1)
            child2 = self.mutation_function(child2)
            next_generation.extend([child1, child2])

        return np.array(next_generation)

    def run(
        self, generations: int, history: bool = False, verbose: bool = True
    ) -> list[np.ndarray]:
        pop_history = []
        best_history = []
        if verbose:
            with Progress() as progress:
                task = progress.add_task("Evolving...", total=generations)
                for _ in range(generations):
                    self.evolve()
                    pop_history.append(self.population.individuals.copy())
                    best_history.append(self.best_individual)
                    progress.advance(task)
        else:
            for _ in range(generations):
                self.evolve()
                pop_history.append(self.population.individuals.copy())
                best_history.append(self.best_individual)
        if history:
            pop_history = [
                [self.population.encoding.decode(ind) for ind in gen]
                for gen in pop_history
            ]
            return (best_history, pop_history)

    def fitness_plot(self, best=False) -> None:
        if self.fitness_history:
            if not best:
                fig = px.line(
                    y=np.array(self.fitness_history),
                    labels={"x": "Generation", "y": "Fitness"},
                    title="Fitness History",
                )
                return fig
            else:
                fig = px.line(
                    y=np.array(self.best_history),
                    labels={"x": "Generation", "y": "Best Fitness"},
                    title="Best Fitness History",
                )
                return fig
        else:
            raise ValueError("No fitness history to plot. Run the algorithm first.")

create_descendants(parents)

Create descendants from the selected parents using crossover and mutation.

Source code in metazoo/src/metazoo/bio/evolutionary/ga.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def create_descendants(self, parents: np.ndarray) -> np.ndarray:
    """
    Create descendants from the selected parents using crossover and mutation.
    """
    # Validate
    if len(parents) < 2:
        raise ValueError("Not enough parents to create descendants.")
    next_generation = []
    for _ in range(self.population.size // 2):
        # Select two parents
        idx1, idx2 = np.random.choice(len(parents), size=2, replace=False)
        parent1 = parents[idx1]
        parent2 = parents[idx2]
        child1, child2 = self.crossover_function(parent1, parent2)
        # Apply mutation
        child1 = self.mutation_function(child1)
        child2 = self.mutation_function(child2)
        next_generation.extend([child1, child2])

    return np.array(next_generation)

eval()

Evaluate the fitness of the current population.

Source code in metazoo/src/metazoo/bio/evolutionary/ga.py
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def eval(self):
    """
    Evaluate the fitness of the current population.
    """

    # Raw Fitness.

    raw_fitness = np.array(
        [
            self.fitness_function(self.population.encoding.decode(individual))
            for individual in self.population.individuals
        ]
    )

    if self.minimize:
        fitness = np.nan_to_num(raw_fitness, nan=1e10, posinf=1e10, neginf=1e10)
        self.best_fitness = float(fitness.min())
        best_idx = int(fitness.argmin())
        fitness_transformed = np.max(fitness) - fitness
    else:
        fitness = np.nan_to_num(raw_fitness, nan=-1e10, posinf=-1e10, neginf=-1e10)
        self.best_fitness = float(fitness.max())
        best_idx = int(fitness.argmax())
        fitness_transformed = fitness

    bestcandidate = self.population.individuals[best_idx]
    self.best_individual = self.population.encoding.decode(bestcandidate)

    return fitness, fitness_transformed

evolve()

Perform one generation of evolution.

Source code in metazoo/src/metazoo/bio/evolutionary/ga.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def evolve(self):
    """
    Perform one generation of evolution.
    """
    fitness, fitness_transformed = self.eval()
    self.fitness_history.append(fitness.mean())
    self.best_history.append(self.best_fitness)
    selected_indices = self.selection_function(
        self.population.individuals, fitness_transformed
    )
    selected_parents = self.population.individuals[selected_indices]
    next_generation = self.create_descendants(selected_parents)

    if self.elitism is not None:
        # Elitism
        # Its a stategy to preserve the best individuals from one generation to the next.
        # This is done to ensure that the best solutions found so far are not lost due to the stochastic nature of genetic algorithms.
        # Here, we simply copy the best individual from the current population to the next generation.
        # This garantees that the best solution found so far is always preserved.
        # Think that in nature, the best individuals are more likely to survive and reproduce, passing their genes to the next generation.
        # Preserve N% of the best individuals
        N = max(1, int(self.elitism * self.population.size))
        if self.minimize:
            elite_indices = np.argsort(fitness)[
                :N
            ]  # Indices of the N best individuals (minimization)
        else:
            elite_indices = np.argsort(fitness)[
                -N:
            ]  # Indices of the N best individuals (maximization)
        elites = self.population.individuals[elite_indices]
        next_generation[:N] = (
            elites  # Replace the first N individuals with the elites
        )

    self.population.individuals = next_generation

summary()

Print all relevant information about the GA instance using rich.

Source code in metazoo/src/metazoo/bio/evolutionary/ga.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def summary(self):
    """
    Print all relevant information about the GA instance using rich.
    """
    table = Table(title="Genetic Algorithm Summary")
    table.add_column("Parameter", style="bold cyan")
    table.add_column("Value", style="bold magenta")
    table.add_row("Population Size", str(self.population_size))
    table.add_row("Genome Length", str(self.genome_length))
    table.add_row("Mutation Rate", str(self.mutation_rate))
    table.add_row("Crossover Rate", str(self.crossover_rate))
    # table.add_row("Encoding", str(self.encoding))
    table.add_row("Selection Function", self.selection_function.__name__)
    table.add_row("Crossover Function", self.crossover_function.__name__)
    table.add_row("Mutation Function", self.mutation_function.__name__)
    table.add_row("Fitness Function", self.fitness_function.__name__)
    # table.add_row("Dimension", str(self.dim))
    table.add_row(
        "Elitism", str(self.elitism) if self.elitism is not None else "None"
    )
    # if self.encoding == "binary":
    #    table.add_row("Epsilon", str(self.epsilon))
    #    table.add_row("Bits Per Var", str(self.bits_per_var))
    #    table.add_row("Genome Length", str(self.genome_length))

    table.add_row("Minimize", str(self.minimize))
    console = Console()
    console.print(table)